The separation and identification of some alkanolamines and their salts by thin-layer chromatography

Alkanolamines, in particular ethanolamines and isopropanolamines, are often used in hydraulic brake fluids and cutting oils as corrosion inhibitors. Also when combined as soaps with fatty acids (usually oleic and stearic acids) they are used extensively as emulsifiers and detergents. The separation and identification of alkanolamines and their salts in such products can be time-consuming and it is advantageous to have a rapid method for doing this.

Amines have been separated by paper and thin-layer chromatography¹⁻⁶ and the R_F value for monoethanolamine in various solvents has been reported. The paper chromatographic methods suffer from the disadvantages of long development times and diffuse substance zones. Thin-layer chromatography, however, is ideally suited to the separation of alkanolamines and the development of a suitable procedure for separating and identifying ethanolamines and isopropanolamines and some of their salts in commercial formulations is described below.

Experimental and discussion

Solvent system/adsorbent/locating agent. Most of the solvent systems reported in the literature for separating amines consist of an alcohol and a base (usually ammonia). For the separation of simple mixtures of ethanolamines and isopropanolamines these systems work fairly well but they do not give a very good separation of complex mixtures. However, if methylene chloride is incorporated into the alcohol-base solvent mixture a much better separation is obtained and also the developing time

TABLE I

colours and R_F values of some alkanolamines and their carboxylic acid salts

Compounds	Colour of zones	$= \frac{2\pi}{2} \left(\frac{1}{2} + $	R _F values	
an a	Ninhydrin	Ninhydrin, then alizarin		
 Monoethanolamine Diethanolamine Triethanolamine Monoisopropanolamine Diisopropanolamine Triisopropanolamine 	Crimson	Crimson	0.26	
	White	Blue-purple	0.43	
	Grey	Grey-purple	0.60	
	Crimson	Crimson	0.47	
	White	Blue-purple	0.63	
	Green	Grey-purple	0.71	
Oleates of alkanolamines (1)-(6)*	Blue/yellow fringe	Blue	Baseline	
	Red	Red	0.60	
Naphthenates of alkanolamines $(1)-(6)^*$	Yellow	Blue	Baseline	
	Red	Red	0.60	
Olcic acid**	Yellow	Blue	Baseline	
	Faint red	Faint red	0.60	
Naphthenic acids** (equivalent weight: 300)	Yellow	Blue	Baseline	
	Faint red	Faint red	0.60	

* A zone due to the particular alkanolamine used was also observed. ** The R_F values of the carboxylic acids are recorded for comparison.

.Chromatog., 23 (1966) 316-319

is decreased. The solvent system finally adopted was methylene chloride-ethanol (95%)-ammonia (0.880) in the proportions 43:43:15 by volume. Of the various adsorbents examined for the separation neutral silica gel was the most suitable. Solutions of 0.2 wt. % ninhydrin and alizarin in acetone were used to locate the separated alkanolamines.

Procedure. The usual thin-layer chromatographic (TLC) procedure was used to separate the alkanolamines. 0.1% solutions of the alkanolamines in ethanol were spotted on the TLC plate of neutral silica gel (250 μ m thickness), I cm apart. The plates were then developed by the ascending technique, heated for IO min at IIO°, sprayed with ninhydrin solution and finally heated for a further 5 min at IIO° to locate the separated alkanolamines. Respraying with alizarin solution gave a further identification.

When an alkanolamine salt is subjected to chromatographic techniques zones are obtained for both the alkanolamine and acid moieties. The alkalonamine salts used included oleates and naphthenates. All of these salts gave a distinct yellow zone at the baseline and a red zone at about R_F 0.60. The R_F values of the alkanolamines separated are given in Table I and the separation is illustrated in Fig. 1.

Application of the method to commercial formulations. A number of hydraulic brake fluids and cutting oils were examined by the procedure.

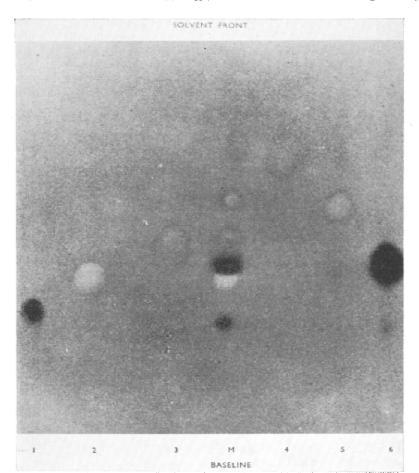


Fig. I. Thin-layer chromatogram of alkanolamines. I = Monoethanolamine; 2 = diethanolamine; 3 = triethanolamine; 4 = triisopropanolamine; 5 = diisopropanolamine; 6 = monoisopropanolamine; M = mixture of I-6.

TABLE II

THE DETECTION OF ALKANOLAMINES AND THEIR SALTS IN VARIOUS COMMERCIAL FORMULATIONS

Formulation	Colour of zones		R _F values	Inj	ference	Alkanolamine found by chemical analysis	
	Ninhydrin	Ninhydrin, then alizarin					
	·				······································		
I a si	Crimson White	Crimson Blue/purple	0.26 0.43		Monoethanolamine Diethanolamine		
	Red	Red/purple	0.60		Triethanolamine Alkanolamine salt	Triethanolamine oleate	
	Yellow	Blue	Baseline		Alkanolamine salt		
2	Crimson White	Crimson Blue/purple	0.26 0.43		Monoethanolamine Diethanolamine	Diethanolamine	
	Red Red 0.60 Yellow Blue Baseline		Diethanolamine oleate				
	.	^ ••			Normalia National de la companya de la company		
3	Crimson White Grey Yellow	Crimson Blue/purple Grey/purple Blue	0.26 0.43 0.60 00.20		Monoethanolamine Diethanolamine Triethanolamine Unknown	Triethanolamine	
I	Crimson Red	Crimson 0.47 Monoisopropanolamine Red 0.60		Monoisopropanolamine naphthenate			
	Yellow	Blue	Baseline		Monoisopropanolamine salt	моноворгоранованиие нариспенате	
5	Crimson White	Crimson Blue/purple	0.26 0.43		Monoethanolamine Diethanolamine		
	Red	Red/purple	o.60	1	Triethanolamine Alkanolamine salt	Triethanolamine Triethanolamine naphthenate	
	Yellow Yellow	Yellow Blue	0.36 0-0.20		None Unknown	ruenanoramme naprenenate	

318

NOTES

The results given in Table II show that whenever triethanolamine was incorporated in a formulation, mono- and di-ethanolamine were present as impurities. When the chromatogram is sprayed with ninhydrin the red zone (R_F 0.60) due to a carboxylic acid overlays and conceals the zone of triethanolamine $(R_F 0.60)$ when both the acid and amine are present in a mixture. However, if triethanolamine is present it can be confirmed by the distinct purple hue of the red zone when spraved with alizarin solution. Sometimes the other components of a formulation cause the acid constituent to appear as a red streak from $R_F \sim 0.3$ to $R_F \sim 0.6$ but this does not prevent identification of the alkanolamine constituents.

"Shell" Research Ltd., Thornton Research Centre, Chester (Great Britain)

A. LYNES

I H. ROSENBERG AND A. N. ENNOR, Biochem. J., 73 (1959) 521.

2 C. E. ROWE, Biochem. J., 73 (1959) 438. 3 J. FRANC AND M. HAJKOVA, Coll. Czech. Chem. Commun., 24 (1959) 423.

4 J. BLASS AND A. SARRNOFF, J. Chromatog., 3 (1960) 168.
5 E. A. MISTRYUKOV, J. Chromatog., 9 (1962) 314.
6 K. TEICHERT, E. MUTSCHLER AND H. ROCHELMEYER, Deut. Apotheker-Zig., 100 (1960) 283.

Received 17th January, 1966

J. Chromatog., 23 (1966) 316-319

Paper chromatography of sugar phosphates and three-carbon phosphates. Extension and modification of the Agarwal procedure*

Many methods¹⁻⁶ have been developed for the paper chromatographic separation of phosphorylated metabolic intermediates. While using one of these procedures⁶, originally designed for the chromatography of hexose phosphates, in the study of organic phosphates in honey⁷, it was found that this procedure would also separate sugar phosphates from some three-carbon phosphates as a group. In addition, with the modification described here, some separation of the individual three-carbon phosphates was obtained.

Experimental

Reagents. All reagents were analytical grade and used as supplied.

Standard sugar phosphatcs and three-carbon phosphates. These standards were converted to their ammonium salts by the method of AGARWAL et al.8. The amount of salt used produced a 0.05 M solution of free acid or ester. The standards are listed with their name, source and abbreviation used in the text**.

* From a thesis submitted by MARY H. SUBERS in partial fulfillment of the requirements for the Degree of Master of Science in Chemistry at Saint Joseph's College.

Mention of trade or company names does not imply endorsement by the Department over others not named.